Customising moment of inertia of a badminton racket: Effects on performance and impact location

<u>Purpose</u>

- Investigate the role of moment of inertia (MoI) on the performance of the badminton smash,
- Current marketing suggests head-heavy (higher Mol rackets) will allow the user to produce higher shuttlecock speeds.
- Study aimed to assess the effect of MoI, defined here as the moment of inertia about an axis 9 cm from the handle end, on the following performance metrics
 - racket head speed, shuttlecock speed, racket deflection and impact location

Background

Elite players cause tip deflections ~60-70 mm at the racket head centre^[1]

Fastest competition smash recorded = 426 kph^[2]

The smash accounts for 54% of 'unconditional winner' and 'forced failure shots in elite competition^[4].

Elastic component racket head of speed accounts for 4-6%^[3]

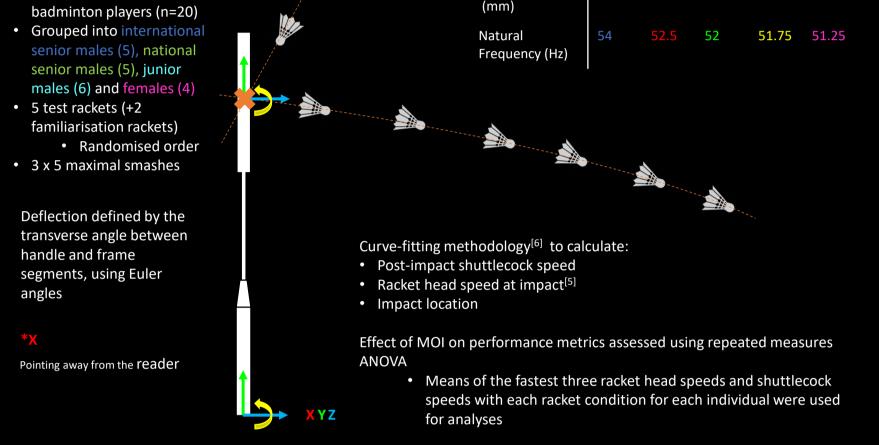
> Commercial rackets MoI typically range from 90-97 kg.cm^{2 [3]}

Hypotheses

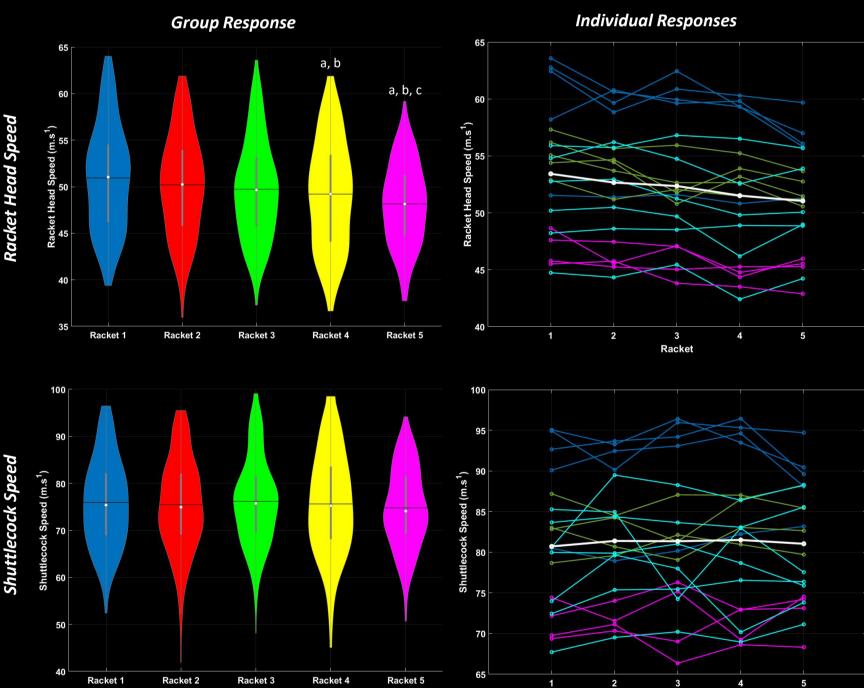
- 1. \uparrow in MoI = \checkmark in racket head speed
- 2. \uparrow in MoI = \uparrow in longitudinal impact location to coincide with node point of 1st bending mode

Methods: Racket Preparation

Equal amount of lead tape (white, filled circles) added to 5 lightweight (72g) base frames

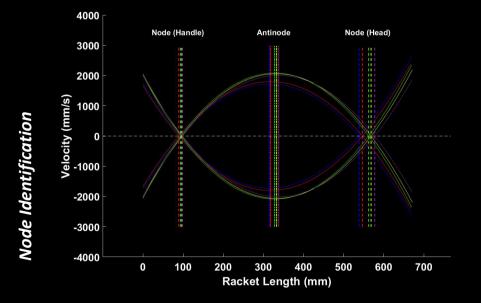

- minimal effect on polar MOI
- produced 5 rackets of incremental MOI, with equal mass, shaft stiffness and string tension
- Centre of mass measured using a balance board (3 scales) and taking moments about the handle end
- Knife-edge pendulum method and HSV allowed MOI calculation

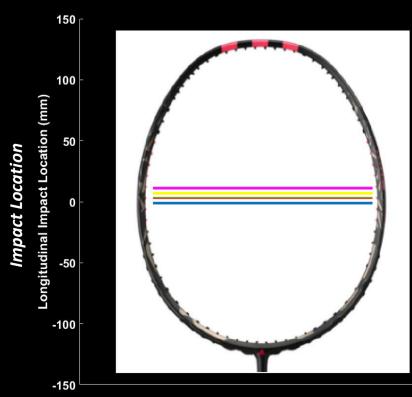
Node Location:


- Modal analysis using Vicon operating at 500 Hz, to obtain fundamental mode (~50-60 Hz^[7])
- MATLAB Fast Fourier Transfer function determined the phase and magnitude of each marker location.
- 2nd order polynomial was fitted to the modal data to obtain node point location

	Methods: Dynamic Trials	
	Vicon (500 Hz)	11ee
•	National & international	

Droporty	Racket					
Property	1	2	3	4	5	
Mass (g)	93.8	94.1	94.0	94.0	94.0	
Balance Point (cm)	30.1	30.9	31.3	32.2	33.1	
Mol (kg.cm²)	85.6	91.5	96.3	100.7	106.8	
Load/Deflection	47.0	46.8	46.6	46.6	46.3	





Violin plots of racket head speed and shuttlecock speed, representing the

mean, median, IQR, distribution and kernel density; a, b, c refer to Bonferroni post-hoc tests significantly different to Rackets 1, 2, 3, respectively (p<0.05)

References

 Kwan et al. (2010). Measurement of badminton racket deflection during a stroke. Sports Engineering, 12, 143-153
 Guinness World Records. (2017). Fastest badminton hit in competition (male). Retrieved June 19, 2019, from https://www.guinnessworldrecords.com/world-records/fastest-badminton-hit-in-competition-(male),

[3] Kwan, M., Rasmussen, J. (2010). The importance of being elastic: Deflection of a badminton racket during a stroke. Journal of Sports Sciences, 28(5), 505-511

Sports Sciences, 28(5), 505-511
[4] Tong, Y., M., Hong, Y. (2000) The playing pattern of world's top single badminton players. 18th International Symposium on Biomechanics in Sports. Hong Kong, China
[5] Kwan et al. (2011). Investigation of high-speed racket kinematics by motion capture. Sports Engineering, 13(2), 57-63.
[6] McErlain-Naylor et al. (2015). Determining instantaneous shuttlecock velocity: overcoming the effects of a low ballistics coefficient. Proceedings of the 14th ITTF Sports Science Congress and 5th World Racquet Sports Congress. Suzhou, China
[7] Gawande et al. (2017). Failure investigation of badminton racket using modal analysis. International Journal for Scientific Research and Development, 5(2), 1849-1856.
[8] Choppin et al. (2011). Impact characteristics of the ball and racket during play at the Wimbledon qualifying tournament. Sports Engineering, 13, 163-170.

↑ in Mol caused a ♥ in racket head speed (p<0.05)

Racket

- lowest Mol racket was not always the fastest racket for each individual perhaps due to familiarity
- linear trend not evident for all individuals

\mathbb{Z} Mol had no significant effects on shuttlecock speed despite the reduction in racket head speed at the racket head centre

Possibly due to the increase in longitudinal impact location (p<0.05), causing a greater racket head speed at the impact location.

Elite senior males > National senior males > Junior males > Females

- Racket head speed
- Shuttlecock speed

Corresponding increase in longitudinal impact location and node location

The nodal 'sweet spot' has been identified as a location that players aim for in tennis, to minimise vibrotactile sensation during play^[8].

Recommendations for racket designers to produce a racket where node and maximum **COR** location coincide

Greater shuttlecock speed and feeling

Greater mass added nearer to the tip caused a \checkmark in natural frequency and greater preimpact deflections (p<0.05)

Future Work

- 1. Identify optimal racket for an individual based on Mol only
- 2. Link subjective shot feeling to impact location in relation to node location
- 3. Perform study over a longer period of time to assess whether allowing an adaptation period to a particular racket specification changes the response to Mol perturbations

Harley Towler

PhD Student - Sports Biomechanics & Engineering School of Sport, Exercise & Health Sciences/ Sports Technology Institute Loughborough University

