alysis

of general and

sport-

specific adaptions

The Flexibility Trainer

Biomechanical analysis of martial arts kick performances for user centred product development **Dominik Hoelbling**

Initiation actions (IA) are performed to generate power but are also the first part of a movement which can be detected by an opponent.

Proximal-to-Distal Movement Sequences (PDMS) describe the power transfer from the pelvis to the target.

Kick technique analysis for pre-requisite extraction

Flexibility and Range of Motion (ROM) determined by Vector Spreading Angle (VSA) analysis

model (see below).

Balance and stability behavior during technique execution determined by novel mathematical models.

Summary

Methods:

- Double side kick analysis
- In karate and kickboxing
- 44 participants (incl. 10 world or european champions)
- Vicon 3D Motion Capturing
- 4 novel analysis models
- developed (Balance; Stability; IA detection; **VSA**)

Outcomes:

- 12 functional (sub-) phases
- Subtle and short IA better
- 2 PDMS detected, first one more
- More balance variance in better fighters
- Higher flexibility and ROM in better fighters
- Three journal publications

Implications:

- Fast and high leg elevation is
- High hip strength and flexibility required

Acute physiological effects:

- Increased stress tolerance
- Autogenic inhibition
- Reciprocal inhibition

Permanent physiological

- Longitudinal hypertrophy
- Reduced residual tension

Technical requirements: Isokinetic mode (constant

- Hydraulic components Ankle rotation safety
- components
- Foot mounts
- Force measurement
- Solid handles

Outcomes:

- Working prototype for athlete
- Novel mathematical models for
- One patent
- One congress publication

hip moment calculation

Methods:

- 15 participants
- Vicon 3D Motion Capturing
- Device training analysis
- · Static flexibility analysis

Outcomes:

- High power output during Ø2.15Nm/kg
- Exceptionally high improvements, in excerpts:
- Static flexion:
- +Ø10.00% • Static abduction:
- VSA (first kick): +Ø15.15%

+Ø13.56%

One journal publication

Implications:

- Significant short term strength and flexibility increases
- Highly effective for martial artists to improve kicking pre-requisites.

References

- Hoelbling, D. (2016): Trainingsgerät. Angemeldet durch Universität Wien. Registration ID: EP16179038.1. Hoelbling, D., Baca, A., & Dabnichki, P. (2020). A Kinematic Model for Assessment of Hip Joint Range-of-Motion in Fast Sport Movements using Spreading Angles. Sports Biomechanics. doi:10.1080/14763141.2020.1795237B

 Hoelbling, D., Baca, A., & Dabnichki, P. (2020). Sequential Action, Power Generation and Balance Characteristics of a Martial Arts Kick Combination. International Journal of Performance Analysis in Sport. doi:10.1080/24748668.2020.1774730
- Hoelbling, D., Grafinger, M., Baca, A., & Dabnichki, P. (2020). The Flexibility Trainer: Feasibility Analysis, Prototype- and Test Station development for a Sports Device for Hip-Joint Flexibility and Strength Enhancement. Paper presented at the Proceedings of the 8th International Conference on Sport Sciences Research and Technology Support (icSPORTS 2020), Budapest, Hungary. doi:10.5220/0010019400220029
- Hoelbling, D., Grafinger, M., Smiech, M., M., Cizmic, D., Baca, A., & Dabnichki, P. (2021). Acute Response on general and sport specific Hip Joint Flexibility to Training with Novel Sport Device. Sports Biomechanics Journal. doi:10.1080/14763141.2021.1922742E
- Hoelbling, D., Smiech, M., M., Cizmic, D., Baca, A., & Dabnichki, P. (2021). Exploration of Martial Arts Kick Initiation Actions
- and Telegraphs. International Journal of Performance Analysis in Sport. doi:10.1080/24748668.2021.1920314
 Hoelbling, D. (2021). The Flexibility Trainer: Biomechanical analysis of martial arts kick performances for user centred product development. (Dissertation), University of Vienna, Vienna, Austria; Royal Melbourne Institute of Technology (RMIT University), Victoria, Australia.

Evaluation methods

Abduction test

transverse plane

VSA

Flexion test

longitudial plane

Experimental Setup

